布鲁卡的脑—著名天文学家卡尔·萨根著作

第54章


  例如,我们可以构想出这样一种专用于海底采矿的机器人。海洋深处到处布满了大量锰核。人们一度认为这些锰核是陨石落到地球上而形成的,但是,目前时髦的看法则认为由于地球内部的地壳构造活动造成了巨大的锰喷泉,从而导致了锰核的偶然形成。在海洋深处还发现了其它许多具有工业价值的稀有矿物。我们今天已经有能力设计一系列可以在海洋底部来回游戈或缓慢爬行的装置;能对地表物质进行分光光谱测定以及进行其他化学检验的装置;能通过无线电将海洋底部的所有发现物的信息发送回船只或陆地的装置;以及能够标明海底发现物、特别是贵重矿物的矿床位置的装置——例如,通过低频无线电自动导引装置去定位。随后,无线电信号就可将大型采矿机械引导到适当的位置上去。深海潜水艇技术和太空飞船环境中的传感器技术能够有今天这样的成就,显然是和这类装置的发展分不开的。至于近海石油钻探、煤矿和其他地下矿藏的开采所取得的巨大进展,也同样是与智能装置的发展密切相关的。从这些装置的安装使用中收回的经济效益不仅可以为上述那些事业的发展提供资金,而且可使整个太空计划长期受益。
  当这些机器突然面临特殊的困难条件时,已编制好的程序设计使它们承认,这些情况超越了它们自身的能力而难以应付,于是就向操纵它们的工作人员询问——为了能保证在安全和愉快的环境中工作——下一步该怎么办。刚才所列举的这些智能机器大多是自我控制型的。当然反过来按遥控处理也未尝不可。在美国能源部的实验室里,就按照遥控设计路线对强放射性物质的远距离处理,做了大量的探索性工作。说到这里,我设想有这样一个人,他通过无线电路与一台活动装置连接起来。比方说操纵者就在马尼拉;可活动装置却在棉兰老海的海底深处。同时操纵者又与一系列电子传送装置联系在一起,这种电子传送装置可以将他的动作放大并传送给那台活动装置,并且反过来又能把活动装置的海底发现变成无线电信号往回传送到他的感觉中去。因此,当操纵者的头向左扭动时,活动装置上的电视摄像机也随之向左转,从而操纵者就能从他周围一个巨大的半球面的电视屏幕上看到由活动装置的探照灯所照射到的并由摄像机揭示的海底景象。当马尼拉的操纵者身着电子服装向前跨出几步时,位于海底深处的活动装置也从容、轻巧地朝前迈几步。当操纵者伸出他的一只手时,活动装置的机械手臂也仿效着自动伸展开来;由于人和机器之间彼此的行为达到了如此完美的协调一致,因此,我们将可能通过机器的手指来精确处理海洋底部的物质。有了这样的装置,人类就能够进入他们原本无法涉足的自然禁区中去了。
  为了对火星进行探索,无人驾驶飞行器已经在火星软着陆,不久,它们就会象月球上的旅行器那样在这颗红色行星的表面上称心如意地四处漫游。我们还未打算向火星发射载人的宇宙飞船。我们当中有些人对于执行这样的飞行任务忧心忡忡,因为其后果不仅有可能把地球上的细菌带到火星上去,而且,假如火星上也有细菌的话,同样可能会把火星上的细菌带回到地球上来,并且这种飞行要耗费巨额资金。1976年夏,留在火星上的“海盗号”着陆器,装有一系列非常有趣的传感器和科学仪器,它们是人类感官向异域环境的延伸。
  “海盗二号”装置,显然由是用于探索火星的,是“海盗号”的主要附属装置,这是一种利用海盗技术而设计的“海盗号漫游器”,它与“海盗号”宇宙飞船的结构完全相同,只是更科学一些,被装上了轮子或履带,可以缓慢地在火星地表上随意爬行。但是,现在我们又遇到一个新问题,这是一个在地球表面上进行机器操作时从未遇到过的问题。虽然火星是第二个离地球最近的行星,但毕竟离地球还是很远的,以致于不得不用光速时间表示。按火星和地球的标准相对位置来说,从地球到该行星的距离为20光-分。这样,如果宇宙飞船碰到险峻的陡坡不得不急剧升降的情况时,它就会向地球发回信息并请示对策。于是,四十分钟后,将得到诸如“看在上帝的面上,立即就地停住”之类的答复。然而,到那个时候,不灵巧的机器早已跌进深山峡谷中去了。因此,任何火星漫游器都需要装有斜坡陡壁传感器。非常幸运的是,这样的传感器并不难弄到,而且甚至已应用于某些儿童玩具中了。当遇到陡峭的斜坡或巨石时,飞船或者停下来等待,直到接收到地球对它的请示报告(及地形的电视录像)作出的指令性答复时为止;或者干脆掉转头来朝别的安全方向驶去。
  到二十世纪八十年代,宇宙飞船的计算机很有可能会装上更精密的随机决策电路。为了将来能对更遥远的目标作进一步探索,我们可以设计出一些沿轨道环绕目标行星飞行的拟人控制器,或者设计停留在目标行星的一个卫星上的拟人控制器。例如,当我们对木星进行探索时,可以设想将拟人控制器放置在木星强烈的辐射带之外的一个小卫星上,从而就控制了遨游在木星密云中的宇宙飞船,这样,只消几秒钟的功夫就可以对飞船作出应答性指令了。
  如果地球上的人们情愿在这项事业上花费一些时间的话,同样也可以置身于这样一种相互影响的控制回路中。但是,如果在火星探索过程中,每一项决定都必须由地面上的操纵者供给的话,那么,漫游器一个小时就只能移动几英尺了。不过,这种漫游器的寿命很长,以致于一小时几英尺的速度都算得上是相当可观的进步速度了。然而,当我们设想到太阳系最远的行星去探险时——并且最终飞到其他星系去的时候——显然,承担更重要责任的将是自我控制型智能机。
  在发展这种智能机的过程中,我们发现一种与生物学进化相类似的情况。“海盗号”漫游器就像是某种躯体庞大,行为笨拙的昆虫,这种似曾相识的感觉真可谓奇特。当然这种智能昆虫还无法自动行走。并且肯定不能自我繁殖,然而,它却有一副外露的骨骼,有一系列类似昆虫的感觉器官,它的智力跟一只蜻蜓不相上下。不过,“海盗号”还具有一种昆虫无法比拟的优点:它能不时地向其地面操纵者请示,并接收人类智慧的信息——操纵者能根据他们的决策重新编制“海盗号”计算机的程序。
  随着智能机器这个领域的迅猛发展,并由于天文学的进步,使得太阳系中遥远星体变得日益可接近和可探索时,我们就将看到,飞船上越来越精密复杂的计算机也会随之迅速发展。智能机将缓慢地攀援它的种系进化之林,从昆虫智能到鳄鱼智能,到松鼠智能——我想,在不很遥远的将来——会出现狗的智能。任何一艘飞往太阳系较外层空间的宇宙飞行器都必须装有一台能够确保飞行正常的计算机,因为不可能派地球上的人去修理。当机器产生故障时,它必须能及时感觉出来,并娴熟有素地自己排除故障。因此,一种既能修理又能替换一台失效的计算机、传感器或者结构部件的智能机器就成为必不可少的了。这种被称为自检自修(STAR)①计算机才不过刚刚踏入发展的门坎。这种计算机装有很多备用元件,像生物那样——我们有两叶肺和两个肾,部分是因为当一个器官的功能丧失时,另一个器官就可代替和补偿病变器官。不过,一台计算机所装有的备件可能会比人身上的备用器官多得多。比如说,它往往不止有一个头和一个心脏。
  重量的减轻,是茫茫宇宙中所进行的探索冒险能否成功的一个重要因素。这迫使人们不得不想方设法力促智能机器的继续小型化。显然,目前已经出现了一些引人注目的小型化迹象,二晶体管已取代了真空管,印刷电路已经代替了有线电路,全套计算机系统也已经被硅片微型电路技术所取而代之。过去多达1930台收音机所占用大量位置的电路,今天却可以印刷在仅占用针尖样大小位置的电路板上。如果在地球采矿和太空探索方面我们能够应用智能机器,那么家务和其他家用机器人的发展趋于商业化的时代就为期不远了。而这类机器是不同于科学幻想小说中那种类似古猿人的机器的,因此没有任何理由非要把它们的模样打扮得如同真人一样,其实,只要和真空吸尘器相差不多,也就心满意足了。它们将按照各自不同的功能来进行专业化作业。然而有许多平凡的工作,从酒吧间招待员到擦洗地板的服务员,尽管所需的主要是体力和耐心,但也需要动点脑筋使之有条不紊。那些如同十九世纪英国正式的男管家那样善于料理家务的多功能自动行走家庭机器人的出现,恐怕将是几十年乃至上百年以后的事了。但是,承担某项特定家务的专用机器人,则可能已经出现在世界上了。
  由智能机来承担城市中的许多其他工作及日常生活中的一些基本事务的设想并非是可望而不可即的。二十世纪七十年代初期,安克雷奇、阿拉斯加和其他一些城市收倒垃圾的工人赢得了一项工资协议,以保证他们每人每年的工资收入达到二万美元。由此可见,仅是经济负担这一条就有足够的理由发展自动垃圾收集机了。当然,一俟家用和城市公用机器人普遍发展起来了,人们则不得不考虑如何有效地重新安排那些被机器人夺去了饭碗的人们的生计;但是,待到下一代新人出现之时,这种恼人的社会难题也就可望迎刃而解了——特别是如果开明的教育改革大见成效的话,人们就更不用为失去工作而发愁了,因为人类是乐于学习的。
小说推荐
返回首页返回目录